

Welcome to DODFMiner’s documentation!

[image: _images/miner.svg]
User Documentation

	Introduction
	DODFMiner

	Installation
	Requirements

	Installing MuPDF

	DODFMiner Installation Methods

	Using DODFMiner
	Command-Line Usage

	Library Usage

	Architecture’s Document
	Document Overview

	Introduction

	Architectural Representation

	Goals and Constraints

	Logical View

	References

	Code of Conduct
	Purpose

	Our standards

	Our Responsibilities

	Enforcement

	Contributing Guide
	How to contribute?

	Branch Policy

	Commits Policy

	Merges and Pull Requests Policy

	Merges

	Test Coverage

Downloader Module

	Downloader Core
	Downloader Class

	Downloader Private Methods

Extractor Module

	Pure Core
	Extract Class

	Extractor Private Members

	Pure Utils
	Box Extactor

	Title Filter

	Title Extactor

	Polished Core
	The Act Extractor Class

	Polished Helper

Acts

	Acts
	Base Class

	Implementing new acts

	Base Class Mechanisms

	Implemented Acts

	Regex Backend

	NER Backend

ETC

	Acknowledgements

	About the KneDLE Team
	Check our website

Introduction

Official publications such as the Diário Oficial do Distrito Federal (DODF) are sources of information on all official government acts. Although these documents are rich in knowledge, analysing these texts manually by specialists is a complex and unfeasible task considering the growing volume of documents, the result of the frequent number of publications in the Distrito Federal Government’s (GDF) communication vehicle.

This scenario is appropriate to employ computational techniques based on text mining and information visualization, in order to discover implicit and relevant knowledge in large textual data sets. It is known that these computational techniques receive data in a structured format. However, as DODF editions are originally published in unstructured format and in natural language, it is required to use techniques to prepare strategies in order to make the necessary adaptations to apply.

DODFMiner

With all that in mind, the DODFMiner is the software that is being developed for the extraction of data from documents in PDF format referring to the publications of the Official Gazette of the Federal District, Brazil.

Installation

Table of Contents

	Installation

	Requirements

	Installing MuPDF

	macOS

	Debian Linux (Ubuntu)

	DODFMiner Installation Methods

	Library Install

	Docker Install

DODFMiner is currently only supported on Linux and OSX. It may be possible to install on Windows, though this hasn’t been extensively tested.

Requirements

	Python3

	MuPDF

Installing MuPDF

MuPDF is the main engine used to parse pdf files on DODFMiner. Its installation is essencial for proper work.

macOS

In macOS use brew to install the library:

$ brew install mupdf

Debian Linux (Ubuntu)

On Ubuntu, or other Debian Linux distro, use the following commands:

$ add-apt-repository ppa:ubuntuhandbook1/apps
$ apt-get update
$ apt-get install mupdf mupdf-tools

DODFMiner Installation Methods

We support two method of installation. The Library method (recommended), and a Docker Install.

Library Install

From The Python Package Index (PyPI):

pip install dodfminer

From Github:

git clone https://github.com/UnB-KnEDLe/DODFMiner.git
cd dodfminer
pip install -e .

Docker Install

Since this project have several dependencies outside Python libraries, there is
a DockerFile and a Compose file provided to facilitate the correct execution. The DockerFile contains instructions on how the image is build,
while the Compose file contains instruction on how to run the image.

The container created by the DockerFile image use a DATA_PATH environment
variable as the location to save the downloaded DODF PDFs and the extracted JSONs. This variable needs to be set before the execution.

To build and execute the image the docker and docker-compose
need to be correct installed:

	Install Docker [https://docs.docker.com/compose/environment-variables/]

	Install Docker Compose [https://docs.docker.com/compose/install/]

After the installation, the first thing that docker needs is an image. To create the image run the following command in the root of the project:

$ docker-compose build

This can took a while to finish.

Now, with the image created, the docker-compose can generate instances (containers) of this image to run specifics tasks.

[image: ../_images/dodfminer-docker.jpg]
$ export DATA_PATH=/path/to/save/files/ \
$ sudo -E docker-compose run dodfminer -sd 01/19 -ed 01/19

This command executes the download task, where -st is the start date and -ed is the end date, representing the interval that the DODFs will be downloaded.

Other arguments can be found excuting the command:

$ export DATA_PATH=/path/to/save/files/ \
$ sudo -E docker-compose run dodfminer --help

Note

1. If your docker is already in the _sudo_ group you can
execute without _sudo_, otherwise the -E argument is needed for
sudo use the environment variables declared in login _bash_.

	The container will not work if the DATA_PATH is not defined in the environment.

Using DODFMiner

Table of Contents

	Using DODFMiner

	Command-Line Usage

	Downloader Module

	Parameters Table

	Extractor Module

	Pure extraction

	Polished Extraction

	Parameters Table

	Library Usage

Command-Line Usage

Considering the module has been installed using pip, you should be able to use DODFMiner as a command line program. To check if installation has been done successfully run:

$ dodfminer --help

A help screen of the program should appear. The helper sould show two positional arguments: downloader and extract.
Each of those arguments can be considered as a subprogram and work independently, you can choose the one you desire using:

$ dodfminer downloader --help
$ dodfminer extract --help

Depending which module you choose the execution parameters will change.

Downloader Module

The downloader module is responsible for downloading DODF PDFs from the website.
It allows you to choose the start and end date of the files you want to download.
Also, you can choose where to save them.
Following are the list of avaiable parameters, their description and the default value.

Note

This module relies on internet connection and can fail if internet is not working properly.
Also, the execution might take a while if there are a huge ammount of pdfs to download.

Parameters Table

	Argument

	Description

	Default

	-sp –save_path

	Folder to output the download DODFs

	./

	-sd –start_date

	Input the date in either mm/yyyy or mm-yyyy

	01/2019

	-ed –end_date

	Input the date in either mm/yyyy or mm-yyyy

	01/2019

Usage Example:

$ dodfminer downloader -sd 01/2003 -ed 05/2004

Extractor Module

The extractor module is responsible for extracting information from DODF PDFs and save it
in a desirable format.

The extraction can be made, to a pure text content, where a DODF will be converted to TXT or JSON. Or,
additionaly, the extraction can be done in a polished way, where from the DODF will be extracted to acts and
its given proprieties in a CSV format.

Pure extraction

Given a -t flag, it allows you to choose the output format between three options: blocks of text with tiles,
pure text in .txt format and text separated by titles:

	Blocks of Text: Outputs a JSON file that extract text blocks.

	Pure Text: Output a .txt file, with raw text from the pdf.

	Blocks of Text with Titles: Outputs a JSON file that extract text blocks indexed by titles.

Polished Extraction

Using the -a or –act flag, you can extract the dodf in a polished way. The usage of the -a will extract all types
of act in the DODF. Additionaly, if desired, the flag can followed by a list of specific acts types which you want to extract.
The extraction is done using the backend specified in the -b flag, which can be either regex or ner.

Available Act Types:

	aposentadoria

	reversoes

	nomeacao

	exoneracao

	abono

	retificacoes

	substituicao

	cessoes

	sem_efeito_aposentadoria

	efetivos_nome

	efetivos_exo

Parameters Table

Following are the list of avaiable parameters, their description and the default value.

	Argument

	Description

	Default

	-i –input_folder

	Path to the PDFs folder

	./

	-s –single-file

	Path to a single PDF

	None

	-t –type-of-extraction

	Type of text extraction

	None

	-a –act

	List of acts that will be extract to CSV

	all

	-b –backend

	Which backend will extract the acts

	regex

Usage Example:

$ dodfminer extract -i path/to/pdf/folder -t with-titles
$ dodfminer extract -s path/to/dodf.pdf -t pure-text
$ dodfminer extract -s path/to/dodf.pdf -a nomeacao
$ dodfminer extract -s path/to/dodf.pdf -a nomeacao cessoes -b ner

Note

It’s important to notice that if -t and -a options are used together the -t option will
have the priority and the -a will not execute.

Note

The DODFMiner act extraction needs the text data from DODFs to correct extract the acts
from DODF, therefore the -a option generates first txt files before the act extraction.

Library Usage

The DODFMiner was created also thinking the user might want to use it as a library in their own projects.
Users can use install the DODFMiner and call its modules and functions in their python scripts. Following are
some of the imports you might want to do, while using as a library:

from dodfminer import acts
from dodfminer import Downloader
from dodfminer import ActsExtractor
from dodfminer import ContentExtractor

The details of using the DODFMiner modules and functions are described in this documentation, in the following sections.

Architecture’s Document

Python is surprisingly flexible when it comes to structuring your applications. On the one hand, this flexibility is great: it allows different use cases to use structures that are necessary for those use cases. On the other hand, though, it can be very confusing to the new developer.

Document Overview

	Topic
	Description

	Introduction
	Describes information about the purpose of this document.

	Architectural Representation
	Provides a description of the software architecture for a better understanding of its structure and functioning.In addition to showing how it is being represented.

 Code of Conduct

Code of Conduct

Purpose

 Contributing Guide

Contributing Guide

How to contribute?

To contribute with this project, you just need to follow the steps up next

	Fork of the repository (for external users only)

	Create branchs

	Follow the commits policy

	Submit Pull Request

Branch Policy

main

The main branch is the production branch, where the stable version of the project will be. It will be blocked for commits and pushs.
See the merges policy in the topic Merges to main.

development

The dev branch is where the work of the other branches will be unified and where a stable version will be created to merge with main.
Like main it is blocked for commits and pushs.
See the merges policy in the topic [Merges for dev] (CONTRIBUTING.md#merges-for-development) merges to dev

 Downloader Core

Downloader Core

Table of Contents

	Downloader Core

	Downloader Class

	Downloader Private Methods

	Path Handling

	URL Making

	Web Requests

	Others

Download DODFs from the Buriti Website and save on proper directory.

Download monthly pdfs of DODFs.

Usage example:

downloader = Downloader()
downloader.pull(start_date, end_date)

Downloader Class

	
class dodfminer.downloader.core.Downloader(save_path='./')

	Responsible for the download of the DODFs Pdfs.

	Parameters

	save_path (str) – Path to save the downloads.

	
_download_path

	Folder in which the downloads will be stored.

	
_prog_bar

	Indicate if download should contain a progress bar.

	
pull(start_date, end_date)

	Make the download of the DODFs pdfs.

All dodfs are downloaded from start_date to end_date inclusively.
The Pdfs are saved in a folder called “data” inside the project folder.

	Parameters

	
	start_date (str) – The start date in format mm/yyyy.

	end_date (str) – The start date in format mm/yyyy.

Note

The name or the path of the save folder are hard coded and can’t
be changed due to some nonsense software engineer decision.

Downloader Private Methods

One does not access directly none of those methods, but they are listed here in case the programmer
using the downloader library needs more informations.

Path Handling

Methods that handle the creation of the paths to the dowloaded DODFS.

	
Downloader._create_single_folder(path)

	Create a single folder given the directory path.

This function might create a folder, observe that the folder already
exists, or raise an error if the folder cannot be created.

	Parameters

	path (str) – The path to be created

	Raises

	OSError – Error creating the directory.

	
Downloader._create_download_folder()

	Create Downloaded DODFs Structures.

	
Downloader._make_month_path(year, actual_date)

	Create and return the folder for the year and month being download.

	Parameters

	
	year (int) – The year respective to the folder.

	actual_date (datetime) – The date in which the downloaded

	corresponds. (DODF) –

	Returns

	The path to the actual month in which the download is being made.

URL Making

Methods that construct an URL to further make the download request.
..
.. automethod:: dodfminer.downloader.core.Downloader._make_url
..
.. automethod:: dodfminer.downloader.core.Downloader._make_href_url
..
.. automethod:: dodfminer.downloader.core.Downloader._make_download_url

Web Requests

Methods that handle the download request and its execution.

	
Downloader._fail_request_message(url, error)

	Log error messages in download.

	Parameters

	
	url (str) – The failing url to the website.

	error (str) – The kind of error happening.

	
Downloader._download_pdf(url, path)

	Download the DODF PDF.

Note

Might be time consuming depending on bandwidth.

	Parameters

	
	url (str) – The pdf url.

	path (str) – The path to save the pdf.

	Raises

	RequestException – Error in case the request to download fails.

Others

Other methods for the downloader library.

	
classmethod Downloader._string_to_date(date)

	Convert the date to datetime.

	Parameters

	date (datetime) – The date to be converted in string format.

	Returns

	Return the date formated in string now as datetime datatype.

	Raises

	Exception – date passed through cli is in wrong format.

	
Downloader._file_exist(path)

	Check if a file exists.

Prevents redownloads.

	Parameters

	path (str) – The path where the file might be

	Returns

	Boolean indicating if file does really exists.

	
Downloader._log(message)

	Logs a message following the downloader pattern.

	Parameters

	message (str) – The message to be logged.

 Pure Core

Pure Core

Table of Contents

	Pure Core

	Extract Class

	Extractor Private Members

	Text Preprocessing

	Check Existence

	Directory Handling

	Others

Extract content from DODFS and export to JSON.

Contains class ContentExtractor which have to public functions
avaiable to extract the DODF to JSON

Usage example:

from dodfminer.extract.pure.core import ContentExtractor

pdf_text = ContentExtractor.extract_text(file)
ContentExtractor.extract_to_txt(folder)

Extract Class

	
class dodfminer.extract.pure.core.ContentExtractor

	Extract content from DODFs and export to JSON.

Extracts content from DODF files using as suport the title and subtitle
databases—which runs using MuPDF—, and the Tesseract OCR library. All the
content is exported to a JSON file, in which its keys are DODF titles or
subtitles, and its values are the correspondent content.

Note

This class is not constructable, it cannot generate objects.

	
classmethod extract_structure(file, single=False, norm='NFKD')

	Extract boxes of text with their respective titles.

	Parameters

	
	file – The DODF file to extract titles from.

	single – Output content in a single file in the file directory.

	norm – Type of normalization [https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize] applied to the text.

	Returns

	A dictionaty with the blocks organized by title.

Example:

{
 "Title": [
 [
 x0,
 y0,
 x1,
 y1,
 "Text"
]
],
 ...
}

	
classmethod extract_text(file, single=False, block=False, is_json=True, sep=' ', norm='NFKD')

	Extract block of text from file

	Parameters

	
	file – The DODF to extract titles from.

	single – output content in a single file in the file directory.

	block – Extract the text as a list of text blocks.

	json – The list of text blocks are written as a json file.

	sep – The separator character between each block of text.

	norm – Type of normalization applied to the text.

Note

To learn more about the each type of normalization used in the
unicode.normalization method, click here [https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize].

	Returns

	These are the outcomes for each parameter combination.

	When block=True and single=True:
	In case json=True, The method saves a JSON file containing the
text blocks in the DODF file. However, is case json=False, the
text from the whole PDF is saved as a string in a .txt file.

	When block=True and single=False:
	The method returns an array containing text blocks.

Each array in the list have 5 values: the first four are the
coordinates of the box from where the text was extracted
(x0, y0, x1, y1), while the last is the text from the box.

Example:

(127.77680206298828,
194.2507781982422,
684.0039672851562,
211.97523498535156,
"ANO XLVI EDICAO EXTRA No- 4 BRASILIA - DF")

	When block=False and single=True:
	The text from the whole PDF is saved in a .txt file as a
normalized string.

	When block=False and single=False:
	The method returns a normalized string containing the
text from the whole PDF.

	
classmethod extract_to_json(folder='./', titles_with_boxes=False, norm='NFKD')

	Extract information from DODF to JSON.

	Parameters

	
	folder – The folder containing the PDFs to be extracted.

	titles_with_boxes – If True, the method builds a dict containing a list of tuples (similar to extract_structure).

	Otherwise (similar to extract_text) –

	tuples (the method structures a list of) –

	norm – Type of normalization [https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize] applied to the text.

	Returns

	For each PDF file in data/DODFs, extract information from the
PDF and output it to a JSON file.

	
classmethod extract_to_txt(folder='./', norm='NFKD')

	Extract information from DODF to a .txt file.

For each PDF file in data/DODFs, the method extracts information from the
PDF and writes it to the .txt file.

	Parameters

	
	folder – The folder containing the PDFs to be extracted.

	norm – Type of normalization [https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize] applied to the text.

Extractor Private Members

One does not access directly none of those methods, but they are listed here in case the programmer
using the extract library needs more informations.

Text Preprocessing

	
classmethod ContentExtractor._normalize_text(text, form='NFKD')

	This method is used for text nomalization.

	Parameters

	
	text – The text to be normalized.

	form – Type of normalization [https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize] applied to the text.

	Returns

	A string with the normalized text.

	
classmethod ContentExtractor._extract_titles(file)

	Extract titles and subtitles from the DODF.

	Parameters

	file – The DODF to extract the titles.

	Returns

	An object of type ExtractorTitleSubtitle, in which have the
attributes:

titles: get all titles from PDF.
subtitle: get all subtitles from PDF.

	Raises

	Exception – error in extracting titles from PDF.

Check Existence

	
classmethod ContentExtractor._get_pdfs_list(folder)

	Get DODFs list from the path.

	Parameters

	folder – The folder containing the PDFs to be extracted.

	Returns

	A list of DODFS’ PDFs paths.

	
classmethod ContentExtractor._get_json_list(folder)

	Get list of exisiting JSONs from the path.

	Parameters

	folder – The folder containing the PDFs to be extracted.

	Returns

	A list of all exisiting JSONs.

	
classmethod ContentExtractor._get_txt_list(folder)

	Get list of exisiting .txt files from the path.

	Parameters

	folder – The folder containing the PDFs to be extracted.

	Returns

	A list of all exisiting .txt files.

Directory Handling

	
classmethod ContentExtractor._struct_subfolders(path, json_f, folder)

	Creates a directory for the JSON files.

This method structures the folder tree for the allocation of
files the code is curretly dealing with.

	Parameters

	
	path – The path to the extracted file.

	json_f (boolean) – If True, the file will extracted to a JSON. Otherwise, it will be extrated to a .txt.

	folder – The folder containing the PDFs to be extracted.

	Raises

	FileExistsError – The folder being created is already there.

	Returns

	The path created for the JSON to be saved.

	
classmethod ContentExtractor._create_single_folder(path)

	Create a single folder given the directory path.

This function might create a folder, observe if the folder already
exists, or raise an error if the folder cannot be created.

	Parameters

	path – The path to be created.

	Raises

	OSError – Error creating the directory.

Others

	
classmethod ContentExtractor._log(msg)

	Print message from within the ContentExtractor class.

	Parameters

	msg – String with message that should be printed out.

 Pure Utils

Pure Utils

Warning

This documentation needs improvments by the code’s author.

Table of Contents

	Pure Utils

	Box Extactor

	Title Filter

	Title Extactor

Box Extactor

Functions to extract boxes from text.

	
dodfminer.extract.pure.utils.box_extractor.compare_blocks(block1, block2)

	
	Implements a comparison heuristic between blocks.
	Blocks that are in the uppermost and leftmost positions
should be inserted before the other block in comparison.

	Parameters

	
	block1 – a block tuple to be compared.

	block2 – a block tuple to be compared to.

	Returns

	Int

	
dodfminer.extract.pure.utils.box_extractor.draw_doc_text_boxes(doc: fitz.Document, doc_boxes, save_path=None)

	
	Draw extracted text blocks rectangles.
	In result, a pdf file with rectangles shapes added, representing the extracted blocks,
is saved.

	Parameters

	
	doc – an opened fitz document

	doc_boxes – the list of blocks on a document, separated by pages

	save_path – a custom path for saving the result pdf

	Returns

	None

	
dodfminer.extract.pure.utils.box_extractor.get_doc_img_boxes(doc: fitz.Document)

	Returns list of list of bouding boxes of extracted images.

	Parameters

	doc – an opened fitz document

	Returns

	
	List[List[Rect(float, float, float, float)]]. Each Rect represents
	an image bounding box.

	
dodfminer.extract.pure.utils.box_extractor.get_doc_text_boxes(doc: fitz.Document)

	Returns list of list of extracted text blocks.

	Parameters

	doc – an opened fitz document.

	Returns

	List[List[tuple(float, float, float, float, str, int, int)]]

	
dodfminer.extract.pure.utils.box_extractor.get_doc_text_lines(doc: fitz.Document)

	Returns list of list of extracted text lines.

	Parameters

	doc – an opened fitz document.

	Returns

	List[List[tuple(float, float, float, str)]]

	
dodfminer.extract.pure.utils.box_extractor.sort_blocks(page_blocks)

	Sort blocks by their vertical and horizontal position.

	Parameters

	page_blocks – a list of blocks within a page.

	Returns

	List[tuple(float, float, float, float, str, int, int)]

	
dodfminer.extract.pure.utils.box_extractor._extract_page_lines_content(page)

	Extracts page lines.

	Parameters

	page – fitz.fitz.Page object to have its bold content extracted.

	Returns

	List[tuple(float, float, float, float, str)]
A list containing lines content at the page, along with
its bounding boxes.

	
dodfminer.extract.pure.utils.box_extractor.get_doc_text_boxes(doc: fitz.Document)

	Returns list of list of extracted text blocks.

	Parameters

	doc – an opened fitz document.

	Returns

	List[List[tuple(float, float, float, float, str, int, int)]]

	
dodfminer.extract.pure.utils.box_extractor.get_doc_text_lines(doc: fitz.Document)

	Returns list of list of extracted text lines.

	Parameters

	doc – an opened fitz document.

	Returns

	List[List[tuple(float, float, float, str)]]

	
dodfminer.extract.pure.utils.box_extractor._get_doc_img(doc: fitz.Document)

	Returns list of list of image items.

Note

This function is not intented to be used by final users,
but internally. Image items are described at:

https://pymupdf.readthedocs.io/en/latest/page/#Page.getImageBbox

	Parameters

	doc – an opened fitz document

	Returns

	List[List[tuple(int, int, int, int, str, str, str, str, int)]]
(xref, smask, width, height, bpc, colorspace,
alt. colorspace, filter, invoker)

	
dodfminer.extract.pure.utils.box_extractor.get_doc_img_boxes(doc: fitz.Document)

	Returns list of list of bouding boxes of extracted images.

	Parameters

	doc – an opened fitz document

	Returns

	
	List[List[Rect(float, float, float, float)]]. Each Rect represents
	an image bounding box.

Title Filter

Find titles using a Filter.

	
class dodfminer.extract.pure.utils.title_filter.BoldUpperCase

	Filter functions useful for bold and upper case text.

Note

This class is static and should not be instanciated.

	
classmethod dict_bold(data)

	Hmm.

Evaluates do True if d[‘flags’] matches the following conditions:

	is one of the values in BoldUpperCase.BOLD_FLAGS

	
classmethod dict_text(data)

	Check if text is title.

Evaluates to true if d[‘text’] matches the following conditions:

	all letters are uppercase;

	does not contain 4 or more consecutive spaces;

	has a len greater than BoldUpperCase.TEXT_MIN/

	Returns

	Boolean indicating if text is title.

Title Extactor

Extract Title and Subtitles.

	
class dodfminer.extract.pure.utils.title_extractor.BBox(bbox)

	
	
property bbox

	Alias for field number 0

	
class dodfminer.extract.pure.utils.title_extractor.Box(x0, y0, x1, y1)

	
	
property x0

	Alias for field number 0

	
property x1

	Alias for field number 2

	
property y0

	Alias for field number 1

	
property y1

	Alias for field number 3

	
class dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle(path)

	Use this class like that:
>> path = “path_to_pdf”
>> extractor = ExtractorTitleSubtitle(path)
>> # To extract titles
>> titles = extractor.titles
>> # To extract subtitles
>> titles = extractor.subtitles
>> # To dump titles and subtitles on a json file
>> json_path = “valid_file_name”
>> extractor.dump_json(json_path)
.

	
dump_json(path)

	Writes on file specified by path the JSON representation of titles
and subtitles extracted.

Dumps the titles and subtitles according to the hierarchy verified
on the document.

The outputfile should be specified and will be suffixed with the
“.json” if it’s not.

	Parameters

	
	path – string containing path to .json file where the dump will

	not. (be done. Its suffixed with ".json" if it's) –

	
property json

	All titles with its subtitles associated.

All subtitles under the same title are at the same level.
Deprecated. Better use titles_subtitles or
titles_subtitles_hierarchy.

	
reset()

	Sets cache to False and reset others internal attributes.
Use when for some reason the internal state was
somehow modified by user.

	
property subtitles

	All subtitles extracted from the file speficied by self._path.

	Returns

	List[TextTypeBboxPageTuple] each of which having its type attribute
equals _TYPE_SUBTITLE

	
property titles

	All titles extracted from the file speficied by self._path.

	Returns

	List[TextTypeBboxPageTuple] each of which having its type attribute
equals _TYPE_TITLE

	
property titles_subtitles

	A list with titles and subtitles, sorted according to its reading order.

	
property titles_subtitles_hierarchy: TitlesSubtitles(titles=<class 'str'>, subtitles=typing.List[str])

	All titles and subtitles extracted from the file specified by
self._path, hierarchically organized.

	Returns

	the titles and its
respectively subtitles

	Return type

	List[TitlesSubtitles(str, List[str])]

	
class dodfminer.extract.pure.utils.title_extractor.TextTypeBboxPageTuple(text, type, bbox, page)

	
	
property bbox

	Alias for field number 2

	
property page

	Alias for field number 3

	
property text

	Alias for field number 0

	
property type

	Alias for field number 1

	
class dodfminer.extract.pure.utils.title_extractor.TitlesSubtitles(titles, subtitles)

	
	
property subtitles

	Alias for field number 1

	
property titles

	Alias for field number 0

	
dodfminer.extract.pure.utils.title_extractor.extract_titles_subtitles(path)

	Extracts titles and subtitles from DODF pdf.

	Parameters

	path – str indicating the path for the pdf to have its
content extracted.

	Returns

	List[TextTypeBboxPageTuple] containing all titles ans subtitles.

	
dodfminer.extract.pure.utils.title_extractor.gen_hierarchy_base(dir_path='.', folder='hierarchy', indent=4, forced=False)

	
	Generates json base from all PDFs immediately under dir_path directory.
	The hiearchy files are generated under dir_path directory.
Args:

dir_path: path so folder containing PDFs
base_name: titles’ base file name
forced: proceed even if folder base_name already exists
indent: how many spaces used will be used for indent

	Returns:
	List[Dict[str, List[Dict[str, List[Dict[str, str]]]]]]
e.g:
[

	{ “22012019”: [
	
	{
	“PODER EXECUTIVO”: []

},
{

“SECRETARIA DE ESTADO DE FAZENDA,

	PLANEJAMENTO, ORÇAMENTO E GESTÃO”: [
	

	{
	“SUBSECRETARIA DA RECEITA”: “”

}

]

}

}

]
In case of error trying to create base_name folder,
returns None.

	
dodfminer.extract.pure.utils.title_extractor.gen_title_base(dir_path='.', base_name='titles', indent=4, forced=False)

	Generates titles base from all PDFs immediately under dir_path directory.
The base is generated under dir_path directory.
:param dir_path: path so base_name will contain all titles

from PDFs under dir_path

	Parameters

	
	base_name – titles’ base file name

	indent – how many spaces used will be used for indent

	Returns

	
	dict containing “titles” as key and a list of titles,
	the same stored at base_name[.json]

	
dodfminer.extract.pure.utils.title_extractor.group_by_column(elements, width)

	Groups elements by its culumns.
The sorting assumes they are on the same page
and on a 2-column layout.

Essentially a “groupby” where the key is the page number of each span.

	Parameters

	elements – Iterable[TextTypeBboxPageTuple] sorted by its page
number to be grouped.

	Returns

	A dict with spans of each page, being keys the page numbers.

	
dodfminer.extract.pure.utils.title_extractor.group_by_page(elements)

	Groups elements by page number.

Essentially a “groupby” where the key is the page number of each span.

	Parameters

	elements – Iterable[TextTypeBboxPageTuple] sorted by its page
number to be grouped.

	Returns

	A dict with spans of each page, being keys the page numbers.

	
dodfminer.extract.pure.utils.title_extractor.invert_text_type_bbox_page_tuple(text_type_bbox_page_tuple)

	Reverses the type between _TYPE_TITLE and _TYPE_SUBTITLE.

	Parameters

	textTypeBboxPageTuple – instance of TextTypeBboxPageTuple.

	Returns

	copy of textTypeBboxPageTuple with its type field reversed.

	
dodfminer.extract.pure.utils.title_extractor.load_blocks_list(path)

	Loads list of blocks list from the file specified.

	Parameters

	path – string with path to DODF pdf file

	Returns

	A list with page blocks, each element being a list with its
according page blocks.

	
dodfminer.extract.pure.utils.title_extractor.sort_2column(elements, width_lis)

	Sorts TextTypeBboxPageTuple iterable.

Sorts sequence of TextTypeBboxPageTuple objects, assuming a full 2-columns
layout over them.

	Parameters

	elements – Iterable[TextTypeBboxPageTuple]

	Returns

	dictionary mapping page number to its elements sorted by column
(assumig there are always 2 columns per page)

	
dodfminer.extract.pure.utils.title_extractor.sort_by_column(elements, width)

	Sorts list elements by columns.

	Parameters

	
	elements – Iterable[TextTypeBboxPageTuple].

	width – the page width (the context in which all list elements
were originally).

	Returns

	List[TextTypeBboxPageTuple] containing the list elements
sorted according to:

	columns

	position on column

Assumes a 2-column page layout. All elements on the left column will
be placed first of any element on the right one. Inside each columns,
reading order is expected to be kept.

	
dodfminer.extract.pure.utils.title_extractor.load_blocks_list(path)

	Loads list of blocks list from the file specified.

	Parameters

	path – string with path to DODF pdf file

	Returns

	A list with page blocks, each element being a list with its
according page blocks.

	
dodfminer.extract.pure.utils.title_extractor.group_by_column(elements, width)

	Groups elements by its culumns.
The sorting assumes they are on the same page
and on a 2-column layout.

Essentially a “groupby” where the key is the page number of each span.

	Parameters

	elements – Iterable[TextTypeBboxPageTuple] sorted by its page
number to be grouped.

	Returns

	A dict with spans of each page, being keys the page numbers.

	
dodfminer.extract.pure.utils.title_extractor.group_by_page(elements)

	Groups elements by page number.

Essentially a “groupby” where the key is the page number of each span.

	Parameters

	elements – Iterable[TextTypeBboxPageTuple] sorted by its page
number to be grouped.

	Returns

	A dict with spans of each page, being keys the page numbers.

	
dodfminer.extract.pure.utils.title_extractor.sort_by_column(elements, width)

	Sorts list elements by columns.

	Parameters

	
	elements – Iterable[TextTypeBboxPageTuple].

	width – the page width (the context in which all list elements
were originally).

	Returns

	List[TextTypeBboxPageTuple] containing the list elements
sorted according to:

	columns

	position on column

Assumes a 2-column page layout. All elements on the left column will
be placed first of any element on the right one. Inside each columns,
reading order is expected to be kept.

	
dodfminer.extract.pure.utils.title_extractor._extract_bold_upper_page(page)

	Extracts page content which have bold font and are uppercase.

	Parameters

	page – fitz.fitz.Page object to have its bold content extracted.

	Returns

	A list containing all bold (and simultaneously upper)
content at the page.

	
dodfminer.extract.pure.utils.title_extractor._extract_bold_upper_pdf(doc)

	Extracts bold content from DODF pdf.

	Parameters

	doc – DODF pdf file returned by fitz.open

	Returns

	a list of list of bold span text

	
dodfminer.extract.pure.utils.title_extractor.sort_2column(elements, width_lis)

	Sorts TextTypeBboxPageTuple iterable.

Sorts sequence of TextTypeBboxPageTuple objects, assuming a full 2-columns
layout over them.

	Parameters

	elements – Iterable[TextTypeBboxPageTuple]

	Returns

	dictionary mapping page number to its elements sorted by column
(assumig there are always 2 columns per page)

	
dodfminer.extract.pure.utils.title_extractor._get_titles_subtitles(elements, width_lis)

	Extracts titles and subtitles from list. WARNING: Based on font size and heuristic.

	Parameters

	titles_subtitles – a list of dict all of them having the keys:
size -> float
text -> str
bbox -> Box
page -> int

	Returns

	TitlesSubtitles[List[TextTypeBboxPageTuple], List[TextTypeBboxPageTuple]].

	
dodfminer.extract.pure.utils.title_extractor._get_titles_subtitles_smart(doc, width_lis)

	Extracts titles and subtitles. Makes use of heuristics.

Wraps _get_titles_subtitles, removing most of impurity
(spans not which aren’t titles/subtutles).

	Parameters

	doc – DODF pdf file returned by fitz.open

	Returns

	
	TitlesSubtitles(List[TextTypeBboxPageTuple],
	List[TextTypeBboxPageTuple]).

	
dodfminer.extract.pure.utils.title_extractor.extract_titles_subtitles(path)

	Extracts titles and subtitles from DODF pdf.

	Parameters

	path – str indicating the path for the pdf to have its
content extracted.

	Returns

	List[TextTypeBboxPageTuple] containing all titles ans subtitles.

	
class dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle(path)

	Use this class like that:
>> path = “path_to_pdf”
>> extractor = ExtractorTitleSubtitle(path)
>> # To extract titles
>> titles = extractor.titles
>> # To extract subtitles
>> titles = extractor.subtitles
>> # To dump titles and subtitles on a json file
>> json_path = “valid_file_name”
>> extractor.dump_json(json_path)
.

	
dump_json(path)

	Writes on file specified by path the JSON representation of titles
and subtitles extracted.

Dumps the titles and subtitles according to the hierarchy verified
on the document.

The outputfile should be specified and will be suffixed with the
“.json” if it’s not.

	Parameters

	
	path – string containing path to .json file where the dump will

	not. (be done. Its suffixed with ".json" if it's) –

	
property json

	All titles with its subtitles associated.

All subtitles under the same title are at the same level.
Deprecated. Better use titles_subtitles or
titles_subtitles_hierarchy.

	
reset()

	Sets cache to False and reset others internal attributes.
Use when for some reason the internal state was
somehow modified by user.

	
property subtitles

	All subtitles extracted from the file speficied by self._path.

	Returns

	List[TextTypeBboxPageTuple] each of which having its type attribute
equals _TYPE_SUBTITLE

	
property titles

	All titles extracted from the file speficied by self._path.

	Returns

	List[TextTypeBboxPageTuple] each of which having its type attribute
equals _TYPE_TITLE

	
property titles_subtitles

	A list with titles and subtitles, sorted according to its reading order.

	
property titles_subtitles_hierarchy: TitlesSubtitles(titles=<class 'str'>, subtitles=typing.List[str])

	All titles and subtitles extracted from the file specified by
self._path, hierarchically organized.

	Returns

	the titles and its
respectively subtitles

	Return type

	List[TitlesSubtitles(str, List[str])]

	
dodfminer.extract.pure.utils.title_extractor.gen_title_base(dir_path='.', base_name='titles', indent=4, forced=False)

	Generates titles base from all PDFs immediately under dir_path directory.
The base is generated under dir_path directory.
:param dir_path: path so base_name will contain all titles

from PDFs under dir_path

	Parameters

	
	base_name – titles’ base file name

	indent – how many spaces used will be used for indent

	Returns

	
	dict containing “titles” as key and a list of titles,
	the same stored at base_name[.json]

	
dodfminer.extract.pure.utils.title_extractor.gen_hierarchy_base(dir_path='.', folder='hierarchy', indent=4, forced=False)

	
	Generates json base from all PDFs immediately under dir_path directory.
	The hiearchy files are generated under dir_path directory.
Args:

dir_path: path so folder containing PDFs
base_name: titles’ base file name
forced: proceed even if folder base_name already exists
indent: how many spaces used will be used for indent

	Returns:
	List[Dict[str, List[Dict[str, List[Dict[str, str]]]]]]
e.g:
[

	{ “22012019”: [
	
	{
	“PODER EXECUTIVO”: []

},
{

“SECRETARIA DE ESTADO DE FAZENDA,

	PLANEJAMENTO, ORÇAMENTO E GESTÃO”: [
	

	{
	“SUBSECRETARIA DA RECEITA”: “”

}

]

}

}

]
In case of error trying to create base_name folder,
returns None.

 Polished Core

Polished Core

Table of Contents

	Polished Core

	The Act Extractor Class

	Returning Objects

	Returning Dataframes

The Act Extractor Class

Returning Objects

The methods in this section return objects or vectors of objects.

Returning Dataframes

The methods in this section return dataframes or vectors of dataframes.

 Polished Helper

Polished Helper

 Acts

Acts

Table of Contents

	Acts

	Base Class

	Implementing new acts

	Regex Methods

	NER Methods

	Change the Core File

	Base Class Mechanisms

	Implemented Acts

Acts are always built as a child class from the Base class Atos. Following are the base class structure
and a guide for implementating your own act. Also, a list of implementated and missing acts are presented.

Base Class

Implementing new acts

The Acts base class is build in a way to make easy implementation of new acts.
A programmer seeking to help in the development of new acts, need not to worry about anything, besides
the regex or ner itself.

Mainly, the following funcions need to be overwrited in the child class.

Regex Methods

In case you want to extract through regex, the following funcions needs to be written:

	
ActRegex._rule_for_inst()

	Rule for extraction of the act

Warning

Must return a regex rule that finds an act in two parts,
containing a head and a body. Where only the body will be used
to search for proprieties.

	Raises

	NotImplementedError – Child class needs to overwrite this method.

	
ActRegex._prop_rules()

	Rules for extraction of the proprieties.

Must return a dictionary of regex rules, where the key is
the propriety type and the value is the rule.

	Raises

	NotImplementedError – Child class needs to overwrite this method

Additionaly, if the programmer whishes to change the regex flags
for his/her class, they can overwrite the following function in the child
class:

	
classmethod ActRegex._regex_flags()

	Flag of the regex search

NER Methods

If NER will be used, you shall add a trained model to the acts/models folder. Also the following method should be overwrited in your act:

Change the Core File

After all functions have been implemented, the programmer needs to do a minor change in the core file.
The following must be added:

from dodfminer.extract.polished.acts.act_file_name import NewActClass
_acts_ids["new_act_name"] = NewActClass

Base Class Mechanisms

One does not access directly none of those functions, but they are listed here in case the programmer
implementing the act needs more informations.

Implemented Acts

	Abono

	Aposentadoria

	Exoneração

	Nomeação

	Retificações

	Reversões

	Substituições

	Cessões

	Tornar sem efeito Aposentadoria

	Exoneração de Cargos Efetivos

 Regex Backend

Regex Backend

Regex backend for act and propriety extraction.

This module contains the ActRegex class, which have all that is necessary to
extract an act and, its proprieties, using regex rules.

	
class dodfminer.extract.polished.backend.regex.ActRegex

	Act Regex Class.

This class encapsulate all functions, and attributes related
to the process of regex extraction.

Note

This class is one of the fathers of the Base act class.

	
_flags

	All the regex flags which will be used in extraction.

	
_rules

	The regex rules for proprieties extraction.

	
_inst_rule

	The regex rule for act extraction.

	
_find_prop_value(rule, act)

	Find a single proprietie in an single act.

	Parameters

	
	rule (str) – The regex rule to search for.

	act (str) – The act to apply the rule.

	Returns

	The found propriety, or a nan in case nothing is found.

	
_prop_rules()

	Rules for extraction of the proprieties.

Must return a dictionary of regex rules, where the key is
the propriety type and the value is the rule.

	Raises

	NotImplementedError – Child class needs to overwrite this method

	
classmethod _regex_flags()

	Flag of the regex search

	
_regex_instances()

	Search for all instances of the act using the defined rule.

	Returns

	List of all act instances in the text.

	
_regex_props(act_raw)

	Create an act dict with all its proprieties.

	Parameters

	act_raw (str) – The raw text of a single act.

	Returns

	The act, and its props in a dictionary format.

	
_rule_for_inst()

	Rule for extraction of the act

Warning

Must return a regex rule that finds an act in two parts,
containing a head and a body. Where only the body will be used
to search for proprieties.

	Raises

	NotImplementedError – Child class needs to overwrite this method.

 NER Backend

NER Backend

 Acknowledgements

Acknowledgements

We gratefully acknowledge the contributions of the many people who helped get this project off of the ground, including people who beta tested the software, gave feedback on the material, improved dependencies of DODFMiner code in service of this release, or otherwise supported the project. Given the number of people who were involved at various points, this list of names may not be exhaustive. (If you think you should have been listed here, please do not hesitate to reach out.)

In no particular order, thank you Khalil Carsten, Renato Nobre, Isaque Alves, Leonardo Maffei, João Zarbiélli, Felipe Almeida, Davi Alves, Fabrício Braz, Thiago Faleiros and Nilton Correia.

We are also grateful to the University of Brasília, TCDF and Finatec (Fundação de Empreendimentos Científicos e Tecnológicos for the partnership, and the FAPDF (Fundação de Apoio à Pesquisa do Distrito Federal) for the funding.

 About the KneDLE Team

About the KneDLE Team

[image: ../_images/knedle.svg]The project “KnEDLe - Knowledge Extraction from Documents of Legal content” is a partnership among FAPDF (Fundação de Apoio à Pesquisa do Distrito Federal), UnB (the University of Brasília) and Finatec (Fundação de Empreendimentos Científicos e Tecnológicos), sponsored by FAPDF. This project was proposed in order to employ official publications as a research object and to extract knowledge. The objective is to develop intelligent tools for extracting structured information from such publications, aiming to facilitate the search and retrieval of information, increasing government transparency and facilitating audit tasks and detecting problems related to the use of public resources.

Check our website [https://unb-knedle.github.io]

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dodfminer	

 	
 	
 dodfminer.downloader.core	

 	
 	
 dodfminer.extract.polished.backend.regex	

 	
 	
 dodfminer.extract.pure.core	

 	
 	
 dodfminer.extract.pure.utils.box_extractor	

 	
 	
 dodfminer.extract.pure.utils.title_extractor	

 	
 	
 dodfminer.extract.pure.utils.title_filter	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | X
 | Y

_

 	
 	_create_download_folder() (dodfminer.downloader.core.Downloader method)

 	_create_single_folder() (dodfminer.downloader.core.Downloader method)

 	(dodfminer.extract.pure.core.ContentExtractor class method)

 	_download_path (dodfminer.downloader.core.Downloader attribute)

 	_download_pdf() (dodfminer.downloader.core.Downloader method)

 	_extract_bold_upper_page() (in module dodfminer.extract.pure.utils.title_extractor)

 	_extract_bold_upper_pdf() (in module dodfminer.extract.pure.utils.title_extractor)

 	_extract_page_lines_content() (in module dodfminer.extract.pure.utils.box_extractor)

 	_extract_titles() (dodfminer.extract.pure.core.ContentExtractor class method)

 	_fail_request_message() (dodfminer.downloader.core.Downloader method)

 	_file_exist() (dodfminer.downloader.core.Downloader method)

 	_find_prop_value() (dodfminer.extract.polished.backend.regex.ActRegex method)

 	_flags (dodfminer.extract.polished.backend.regex.ActRegex attribute)

 	_get_doc_img() (in module dodfminer.extract.pure.utils.box_extractor)

 	_get_json_list() (dodfminer.extract.pure.core.ContentExtractor class method)

 	_get_pdfs_list() (dodfminer.extract.pure.core.ContentExtractor class method)

 	
 	_get_titles_subtitles() (in module dodfminer.extract.pure.utils.title_extractor)

 	_get_titles_subtitles_smart() (in module dodfminer.extract.pure.utils.title_extractor)

 	_get_txt_list() (dodfminer.extract.pure.core.ContentExtractor class method)

 	_inst_rule (dodfminer.extract.polished.backend.regex.ActRegex attribute)

 	_log() (dodfminer.downloader.core.Downloader method)

 	(dodfminer.extract.pure.core.ContentExtractor class method)

 	_make_month_path() (dodfminer.downloader.core.Downloader method)

 	_normalize_text() (dodfminer.extract.pure.core.ContentExtractor class method)

 	_prog_bar (dodfminer.downloader.core.Downloader attribute)

 	_prop_rules() (dodfminer.extract.polished.backend.regex.ActRegex method)

 	_regex_flags() (dodfminer.extract.polished.backend.regex.ActRegex class method)

 	_regex_instances() (dodfminer.extract.polished.backend.regex.ActRegex method)

 	_regex_props() (dodfminer.extract.polished.backend.regex.ActRegex method)

 	_rule_for_inst() (dodfminer.extract.polished.backend.regex.ActRegex method)

 	_rules (dodfminer.extract.polished.backend.regex.ActRegex attribute)

 	_string_to_date() (dodfminer.downloader.core.Downloader class method)

 	_struct_subfolders() (dodfminer.extract.pure.core.ContentExtractor class method)

A

 	
 	ActRegex (class in dodfminer.extract.polished.backend.regex)

B

 	
 	BBox (class in dodfminer.extract.pure.utils.title_extractor)

 	bbox (dodfminer.extract.pure.utils.title_extractor.BBox property)

 	(dodfminer.extract.pure.utils.title_extractor.TextTypeBboxPageTuple property)

 	
 	BoldUpperCase (class in dodfminer.extract.pure.utils.title_filter)

 	Box (class in dodfminer.extract.pure.utils.title_extractor)

C

 	
 	compare_blocks() (in module dodfminer.extract.pure.utils.box_extractor)

 	
 	ContentExtractor (class in dodfminer.extract.pure.core)

D

 	
 	dict_bold() (dodfminer.extract.pure.utils.title_filter.BoldUpperCase class method)

 	dict_text() (dodfminer.extract.pure.utils.title_filter.BoldUpperCase class method)

 	
 dodfminer.downloader.core

 	module

 	
 dodfminer.extract.polished.backend.regex

 	module

 	
 dodfminer.extract.pure.core

 	module

 	
 	
 dodfminer.extract.pure.utils.box_extractor

 	module

 	
 dodfminer.extract.pure.utils.title_extractor

 	module

 	
 dodfminer.extract.pure.utils.title_filter

 	module

 	Downloader (class in dodfminer.downloader.core)

 	draw_doc_text_boxes() (in module dodfminer.extract.pure.utils.box_extractor)

 	dump_json() (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle method), [1]

E

 	
 	extract_structure() (dodfminer.extract.pure.core.ContentExtractor class method)

 	extract_text() (dodfminer.extract.pure.core.ContentExtractor class method)

 	extract_titles_subtitles() (in module dodfminer.extract.pure.utils.title_extractor), [1]

 	
 	extract_to_json() (dodfminer.extract.pure.core.ContentExtractor class method)

 	extract_to_txt() (dodfminer.extract.pure.core.ContentExtractor class method)

 	ExtractorTitleSubtitle (class in dodfminer.extract.pure.utils.title_extractor), [1]

G

 	
 	gen_hierarchy_base() (in module dodfminer.extract.pure.utils.title_extractor), [1]

 	gen_title_base() (in module dodfminer.extract.pure.utils.title_extractor), [1]

 	get_doc_img_boxes() (in module dodfminer.extract.pure.utils.box_extractor), [1]

 	
 	get_doc_text_boxes() (in module dodfminer.extract.pure.utils.box_extractor), [1]

 	get_doc_text_lines() (in module dodfminer.extract.pure.utils.box_extractor), [1]

 	group_by_column() (in module dodfminer.extract.pure.utils.title_extractor), [1]

 	group_by_page() (in module dodfminer.extract.pure.utils.title_extractor), [1]

I

 	
 	invert_text_type_bbox_page_tuple() (in module dodfminer.extract.pure.utils.title_extractor)

J

 	
 	json (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle property), [1]

L

 	
 	load_blocks_list() (in module dodfminer.extract.pure.utils.title_extractor), [1]

M

 	
 	
 module

 	dodfminer.downloader.core

 	dodfminer.extract.polished.backend.regex

 	dodfminer.extract.pure.core

 	dodfminer.extract.pure.utils.box_extractor

 	dodfminer.extract.pure.utils.title_extractor

 	dodfminer.extract.pure.utils.title_filter

P

 	
 	page (dodfminer.extract.pure.utils.title_extractor.TextTypeBboxPageTuple property)

 	
 	pull() (dodfminer.downloader.core.Downloader method)

R

 	
 	reset() (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle method), [1]

S

 	
 	sort_2column() (in module dodfminer.extract.pure.utils.title_extractor), [1]

 	sort_blocks() (in module dodfminer.extract.pure.utils.box_extractor)

 	
 	sort_by_column() (in module dodfminer.extract.pure.utils.title_extractor), [1]

 	subtitles (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle property), [1]

 	(dodfminer.extract.pure.utils.title_extractor.TitlesSubtitles property)

T

 	
 	text (dodfminer.extract.pure.utils.title_extractor.TextTypeBboxPageTuple property)

 	TextTypeBboxPageTuple (class in dodfminer.extract.pure.utils.title_extractor)

 	titles (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle property), [1]

 	(dodfminer.extract.pure.utils.title_extractor.TitlesSubtitles property)

 	
 	titles_subtitles (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle property), [1]

 	titles_subtitles_hierarchy (dodfminer.extract.pure.utils.title_extractor.ExtractorTitleSubtitle property), [1]

 	TitlesSubtitles (class in dodfminer.extract.pure.utils.title_extractor)

 	type (dodfminer.extract.pure.utils.title_extractor.TextTypeBboxPageTuple property)

X

 	
 	x0 (dodfminer.extract.pure.utils.title_extractor.Box property)

 	
 	x1 (dodfminer.extract.pure.utils.title_extractor.Box property)

Y

 	
 	y0 (dodfminer.extract.pure.utils.title_extractor.Box property)

 	
 	y1 (dodfminer.extract.pure.utils.title_extractor.Box property)

_static/file.png

_static/dodfminer-docker.jpg
DODF PDFs

structured JSONs

(2]
®)
=
—
=
=
®
=

Bulwuiagoda

_static/minus.png

_static/mine-icon.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to DODFMiner’s documentation!

 		
 Introduction

 		
 DODFMiner

 		
 Installation

 		
 Requirements

 		
 Installing MuPDF

 		
 macOS

 		
 Debian Linux (Ubuntu)

 		
 DODFMiner Installation Methods

 		
 Library Install

 		
 Docker Install

 		
 Using DODFMiner

 		
 Command-Line Usage

 		
 Downloader Module

 		
 Extractor Module

 		
 Library Usage

 		
 Architecture’s Document

 		
 Document Overview

 		
 Introduction

 		
 Objetive

 		
 Escope

 		
 Definitions, Acronyms and Abreviations

 		
 Revision History

 		
 Architectural Representation

 		
 Relationship Diagram

 		
 Subpackages Structure

 		
 Technologies

 		
 Goals and Constraints

 		
 Non-functional Requirements

 		
 General Constraints

 		
 Tecnological Constraints

 		
 Logical View

 		
 Overview

 		
 Package Diagram

 		
 Class Diagram

 		
 References

 		
 Code of Conduct

 		
 Purpose

 		
 Our standards

 		
 Expected behavior

 		
 Unacceptable behavior

 		
 Our Responsibilities

 		
 Enforcement

 		
 Contributing Guide

 		
 How to contribute?

 		
 Branch Policy

 		
 main

 		
 development

 		
 Branch name

 		
 Commits Policy

 		
 Merges and Pull Requests Policy

 		
 Pull Requests

 		
 Merges

 		
 Code Review

 		
 Test Coverage

 		
 Downloader Core

 		
 Downloader Class

 		
 Downloader Private Methods

 		
 Path Handling

 		
 URL Making

 		
 Web Requests

 		
 Others

 		
 Pure Core

 		
 Extract Class

 		
 Extractor Private Members

 		
 Text Preprocessing

 		
 Check Existence

 		
 Directory Handling

 		
 Others

 		
 Pure Utils

 		
 Box Extactor

 		
 Title Filter

 		
 Title Extactor

 		
 Polished Core

 		
 The Act Extractor Class

 		
 Returning Objects

 		
 Returning Dataframes

 		
 Polished Helper

 		
 Acts

 		
 Base Class

 		
 Implementing new acts

 		
 Regex Methods

 		
 NER Methods

 		
 Change the Core File

 		
 Base Class Mechanisms

 		
 Implemented Acts

